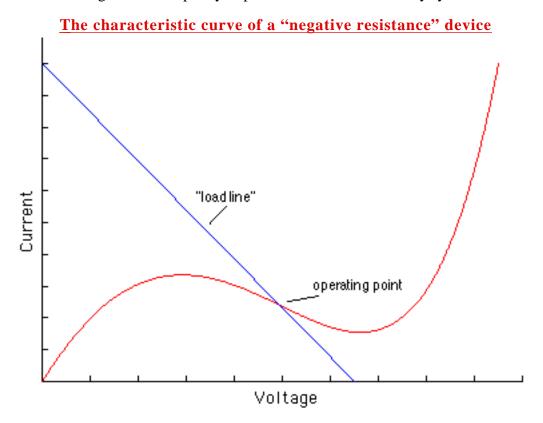
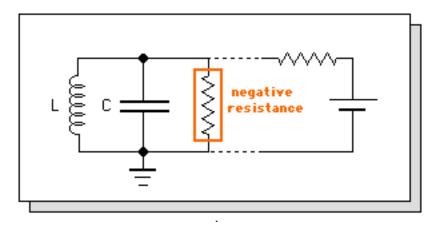
The van der Pol Negative Resistance Oscillator

Van der Pol's analysis¹ of "negative resistance" (*e.g.*, tunnel diode) oscillators prides a valuable framework for treating relative simplicity important features of oscillatory systems.



Consider the following negative resistance oscillatory circuit:



By simple circuit analysis, it is a straightforword proposition to find the following simple circuit equation which is the fundamental van der Pol oscillator equation:

¹ B. van der Pol, *Radio Rev.* **1**, 704-754, 1920 and B. van der Pol, *Phil. Mag.* **3**, 65, 1927

$$\frac{d^{2}}{dt^{2}}v(t) - \frac{d}{dt}\left[v(t) - v^{3}(t)\right] + {}_{0}^{2}v(t) = 0$$
 [VdP-1]

where ${}_{0}^{2} = (LC)^{-1}$.

If is small, it is reasonable to take

$$v(t) = \frac{1}{2}V(t) \exp\left(-i \quad {}_{0}t\right) + c.c.$$
 [VdP-2]

Then Equation [VdP-1] becomes without approximation

$$\frac{1}{2} \left[- {}^{2}_{0}V(t) - i \, 2 \, {}_{0}\dot{V}(t) + \ddot{V}(t) \right] \exp\left(-i \, {}_{0}t\right) + c.c.$$

$$- \left[- 3^{-}v^{2}(t) \right] \frac{1}{2} \left[-i \, {}_{0}V(t) + \dot{V}(t) \right] \exp\left(-i \, {}_{0}t\right) + c.c. \quad [VdP-3]$$

$$+ {}^{2}_{0} \frac{1}{2}V(t) \exp\left(-i \, {}_{0}t\right) + c.c. = 0$$

If we ignore harmonic generation, Equation [VdP-3] may be approximated as

$$\frac{1}{2} \left[-i \, 2 \, {}_{0} \, \dot{V}(t) + \ddot{V}(t) \right] \exp\left(-i \, {}_{0} \, t \right) + c.c.$$

$$- \frac{1}{2} \left[-i \, {}_{0} \, V(t) + \dot{V}(t) \right] \exp\left(-i \, {}_{0} \, t \right) + c.c.$$

$$+ \frac{3}{8} - i \, {}_{0} \left| V(t) \right|^{2} V(t) + \frac{d}{dt} \left[\left| V(t) \right|^{2} V(t) \right] \exp\left(-i \, {}_{0} \, t \right) + c.c. = 0$$

If we make the **slow time variation** assumption, this equation reduces to

$$\dot{V}(t) = \frac{1}{2} - \frac{3}{4} |V(t)|^2 V(t) = \frac{1}{2} [-|V(t)|^2] V(t)$$
 [VdP-5]

where = 3 - /4. This essential Equation [VI-25b] in the lecture set entitled *The Interaction of Radiation and Matter: Semiclassical Theory*. We saw there that the general steady state solution is given by

$$\left|V(t)\right|^2 = -$$
 [VdP-6]

To study <u>frequency locking</u> we suppose that a driving source (to be precise a current source in parallel with the negative resistance) and then the van der Pol equation becomes

$$\frac{d^{2}}{dt^{2}}v(t) - \frac{d}{dt} \left[v(t) - v^{3}(t) \right] + {}_{0}^{2}v(t) = {}^{2}V_{0} \sin t$$

$$= \frac{{}^{2}V_{0}}{2} \left[i \exp\left(-i - t\right) + c.c. \right]$$
[VdP-7]

In this case, it is reasonable to take

$$v(t) = \frac{1}{2}V(t)\exp(-i \quad t) + c.c.$$
 [VdP-8]

If we again ignore harmonic geneation, Equation [VdP-7] becomes

$$\frac{1}{2} \left[- {}^{2}V(t) - i \ 2 \quad \dot{V}(t) + \ddot{V}(t) \right] \exp\left(-i \quad t\right) + c.c.$$

$$- \left[- 3 - v^{2}(t) \right] \frac{1}{2} \left[-i \quad V(t) + \dot{V}(t) \right] \exp\left(-i \quad t\right) + c.c.$$

$$+ {}^{2}_{0} \frac{1}{2}V(t) \exp\left(-i \quad t\right) + c.c.$$

$$= \frac{{}^{2}V_{0}}{2} \left[i \exp\left(-i \quad t\right) + c.c. \right]$$
[VdP-9]

Again under the **slow time variation** assumption, this equation reduces to

$$\frac{1}{2} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} V(t) - i \quad \dot{V}(t) + i \quad \frac{1}{2} \left[- |V(t)|^2 \right] V(t) = i \frac{2V_0}{2}$$
 [VdP-10]

If we take $V(t) = |V(t)| \exp(-i(t))$, this equation separate into the following pair of equations:

$$\left|\dot{V}(t)\right| = \frac{1}{2} \left[- \left| V(t) \right|^2 \right] \left| V(t) \right| - \frac{V_0}{2} \cos \left(t \right)$$
 [VdP-11a]

$$(t) = \frac{1}{2} \frac{\binom{2}{0} - \binom{2}{0}}{l} + \frac{V_0}{2|V(t)|} \sin (t) = d + l \sin (t)$$
 [VdP-11b]

where $d = \frac{1}{2} \left(\frac{2}{0} - \frac{2}{0} \right) = \left(\frac{2}{0} - \frac{2}{0} \right)$ (the "detuning term") and $l = \frac{V_0}{2|V(t)|}$ (the "locking")

The van der Pol Negative Resistance Oscillator

coefficient"). For small V_0 we can decouple the equations and take $|V(t)|^2 = -$ from Equation [VdP-6] so that $l = \frac{V_0}{2|V(t)|} = \frac{1}{2} - V_0$. If |d/l| >> 1 the relative phase angle changes linearly in time at the rate |d| d |d| d |d| decreases toward unity, the "locking term" subtracts from the "detuning term" in one half of a cycle and adds in the other half. At |d/l| = 1 there are two values of the phase angle that yield the "mode locking" condition |d| = 0 - viz.

$$_{PL} = \begin{cases} -\sin^{-1}(d/l) \\ +\sin^{-1}(d/l) \end{cases}$$
 [VdP-12]

We can test the stability of these solutions by taking (t) = PL + (t) and therefore Equation [VdP-11b] becomes

$$(t)$$
 $l\cos\left(\frac{1}{2}\right)$ (t) [VdP-13]

and the solutions are stable if

$$l\cos\left(\begin{array}{c}l \\ PL\end{array}\right) < 0$$
 [VdP-14a]

$$\sqrt{l^2 - d^2} < 0 \qquad [VdP-14b]$$

The van der Pol Negative Resistance Oscillator